skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kong, Wenwen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the roles of land surface conditions and atmospheric circulation on continental daily temperature variance is key to improving predictions of temperature extremes. Evaporative resistance ( r s , hereafter), a function of the land cover type, reflects the ease with which water can be evaporated or transpired and is a strong control on land-atmosphere interactions. This study explores the effects of r s perturbations on summer daily temperature variance using the Simple Land Interface Model (SLIM) by mimicking, for r s only, a global land cover conversion from forest to crop/grassland. Decreasing r s causes a global cooling. The cooling is larger in wetter areas and weaker in drier areas, and primarily results from perturbations in shortwave radiation (SW) and latent heat flux (LH). Decreasing r s enhances cloud cover due to greater land surface evaporation and thus reduces incoming SW over most land areas. When r s decreases, wetter areas experience strong evaporative cooling, while drier areas become more moisture-limited and thus experience less cooling. Thermal advection further shapes the temperature response by damping the combined impacts of SWand LH. Temperature variance increases in drier areas and decreases in wetter areas as r s decreases. The temperature variance changes can be largely explained from changes in the combined variance of SW and LH, including an important contribution of changes in the covariance of SW and LH. In contrast, the effects of changes in thermal advection variance mainly affect the Northern Hemisphere mid-latitudes. 
    more » « less